Bonn, February 8th, 2012. The new working group led by Professor Frank Bradke at the DZNE is studying how nerve cells can be stimulated to regenerate themselves in the case of paraplegia
While broken bones, muscle tears or wounds in the skin usually heal by themselves, the situation is different in the spinal cord. If the spinal cord is severed, it never grows together again. The result is paraplegia. Yet why doesn’t the spinal cord regenerate? And how can people suffering from paraplegia nevertheless be helped? These questions stand at the centre of research being conducted by Professor Frank Bradke and his new working group at the German Centre for Neurodegenerative Diseases (DZNE) in Bonn.
Nerve cells in the central nervous system are surrounded by a myelin sheath. This layer protects the nerve cells but also prevents their regeneration following injuries. It contains a whole series of molecules that may prevent the regrowth of nerve fibres. According to Bradke, these molecules are “comparable to stop signs for road traffic.” If a nerve fibre encounters such a stop sign, it does not grow any further. Scientists around the world are working to identify these growth-inhibiting molecules. Bradke has chosen a different approach, however: he and his working group are focusing on the nerve cells themselves. Why do they stop at the stop signs? Can nerve cells be made to ignore the stop signs and simply continue growing? “We are trying to turn nerve cells into somewhat more reckless drivers,” says Bradke. Bradke’s previous work has already demonstrated that this approach is highly promising: he has shown using animal models that small quantities of Taxol, a substance that is also used in cancer therapy, can stabilise the cytoskeleton of the nerve cells in such a way that severed nerve cells are stimulated to grow again.